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ABSTRACT
We present Bitey, a subtle, wearable device for enabling input
via tooth clicks. Based on a bone-conduction microphone
worn just above the ears, Bitey recognizes the click sounds
from up to five different pairs of teeth, allowing fully hands-
free interface control. We explore the space of tooth input
and show that Bitey allows for a high degree of accuracy
in distinguishing between different tooth clicks, with up to
94% accuracy under laboratory conditions for five different
tooth pairs. Finally, we illustrate Bitey’s potential through
two demonstration applications: a list navigation and selection
interface and a keyboard input method.

Author Keywords
Bio-acoustics; tooth input; gestures; wearable computing;
subtle interfaces; audio interfaces.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: Input devices
and strategies

INTRODUCTION
Modern mobile devices such as smartphones, smart watches,
and other wearable computing devices, while enormously
capable, require a high degree of explicit attention from the
user for both input and output. A number of interfaces have
been proposed to reduce the amount of interaction necessary
for short tasks [4, 15, 33]; however, most of these interfaces
still require the use of the hands, which may not be feasible
in all cases (e.g., impairments, disabilities, or situational
impairments [39] such as carrying objects [32]). One solution
to this issue is speech recognition, such as used in the Apple
Watch or Google Glass; however, in many situations, speech
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Figure 1. The bone-conduction microphone used in Bitey (bottom) and
its nearly invisible positioning on the temporal bone just above the ear
(top).

is socially disruptive. Speech may also not be appropriate for
cases in whichmicrointeractions—very short interactions such
as dismissing a phone call [4]—are desired. Other options
such as augmenting the surface of the body [16] are attractive
but still require the user to have at least one hand unoccupied.

In this paper, we present Bitey, a system that detects and
classifies tooth clicking sounds to allow hands-free input to an
interface. Bitey allows a user to operate an interface instantly:
to initiate a process such as a phone call, to respond to a
notification, or to control an ongoing process such as music
playback. Although other tooth click-based interfaces have
been proposed previously (see Related Work), all detect only
whether any pair of teeth was clicked; in contrast, Bitey greatly
expands the interaction capabilities by classifying which pair
of teeth was clicked.
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As a simple example, imagine using Bitey to control music
playback while exercising on a rowing machine. In this
situation, speech is not practical due to the intense nature of the
activity, and both hands are fully engaged in using the rowing
machine. Using Bitey, one could simply click the right canine
teeth together to switch to the next song, or click together the
left canine and left bicuspid to lower the volume.

The hardware used in Bitey is minimal—simply a bone-
conduction microphone which is worn discreetly above the
ears and can easily be integrated into a head-worn display or
a hat for complete invisibility. In contrast to speech-based
interfaces, Bitey is always listening, requiring no activation
sequence (e.g., “Okay, Glass”), is completely hands-free, and
provides discrete access to multiple functions without the need
for visual feedback.

The core contributions of our research are as follows:

1. we describe the use of inexpensive off-the-shelf hardware
to reliably record tooth click sounds;

2. we describe methods for differentiating between the click
sounds produced by different pairs of teeth;

3. we evaluate the performance of our recognition techniques
with respect to the amount of training data needed, evolution
of the characteristics of the input over time, and under non-
ideal circumstances such as while the user is in motion or
speaking;

4. we explore the sensitivity of our system to microphone
placement;

5. and we demonstrate several example applications of our
input technique.

Terminology
We briefly define some of the potentially unfamiliar terms used
in this paper: auscultation is the act of listening to the internal
sounds of the body, often for medial diagnosis; gnathosonics
is the study of the sounds produced by the teeth and jaws [49];
occlusion is the position of the teeth when the jaws are closed;
and, although the term occlusogram has been used for the
visualization of the sound produced by occlusion [9], we use
gnathosonogram (possibly coined in [30]) to connote the more
general sense of a visualization of sounds made by the teeth.

RELATED WORK

Dentistry and gnathosonics
Thefield of dentistry has long been interested in detecting issues
with dentition based on the sounds of tooth clicks. In 1953,
Stewart introduced the idea of using auscultation to diagnose
issues with occlusion [44], and noted that different teeth
made different sounds based on their shapes. Starting in the
1960s [48, 49], Watt began an investigation of what he termed
“gnathosonics,” describing the study of sounds made by the
teeth in order to diagnose issues with occlusion. In subsequent
work [50, 51, 52], he defined a three classes based on the
duration of the tooth click sound, essentially categorizing teeth
contacts into “normal,” “some abnormal” and “all abnormal”.
This early work and others contemporaneous [8, 10] were

mainly limited to the dental professional directly listening to the
sounds of tooth contact or visually inspecting an occlusogram.

In the late 1980s, gnathosonic research involving computers
began to appear. Fuller and West investigated extracting
simple features from tooth clicks in order to classify the clicks
into Watt’s categories [13]; they used the duration of the
click, amplitude of the sound, and the duration of the initial
high-frequency segment of the sound, but with only limited
success. Teodorescu et al. made an early attempt at automatic
analysis of gnathosonic sounds with analog circuitry [45]. Shi
et al. [40,41] used a piezoelectric transducer on the cheekbone
to record tooth click sounds and classified them into Watt’s
categories using an autoregressive model.

Auscultation of the teeth has been used for other purposes
beyond classification into Watt’s categories: Hȩdzelek and
Hornowski placed accelerometers on the side of the bone next
to the eyes and analyzed the Fourier transform for three groups
of patients with differing pathologies [17], while Prinz, using
headphone as microphones, used visual inspections of different
transformations of occlusograms to distinguish between single
and multiple tooth clicks after dental work [35].

Tooth click interfaces
In the computing literature, there has been some limited
work in using tooth clicking as input to human-computer
interfaces, mainly with the aim to control assistive technology.
None of this prior work attempts to differentiate among clicks
from different teeth. Kuzume used an in-ear bone-conduction
microphone to detect tooth click sounds using the FFT of the
sound, also implementing a voice rejection algorithm [21, 24].
Zhong et al. detected tooth clicks and rejected voice via similar
methods, also using a bone-conduction microphone [31, 56].

Multiple researchers [22, 23, 36, 42, 43, 55] have implemented
tooth click-based interfaces for assistive technology, wherein a
selection is made via some non-tooth click mechanism and then
confirmed via a single or double tooth click. One exception is
in Zhong et al. [56] where selection is via double-clicking and
confirmation is via a single click. No prior work investigates
disambiguating between teeth for a higher degree of control.

Although all of this work explores how to reject false positives
due to speaking, none investigates the usability of a tooth-click
interface in a non-lab setting such as while the user is walking,
which can cause noise from movement of the microphone on
the head. Additionally, while Zhong et al. acknowledge that
microphone placement can be important [56], no previous
research explores how changing the microphone location over
time influences the performance of the system.

Auscultation-based interfaces
Gnathosonics, and therefore Bitey, is an example of ausculta-
tion, or the act of listening to the internal sounds of the body.
Auscultation has a long history in the medical field, but also
has history in the HCI and ubiquitous computing communities.
Yatani and Truong [53] and Rahman et al. [37] experimented
with auscultation hardware for recognition of various body-
centric activities such as eating, drinking, speaking, coughing,
and different breathing patterns.
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Figure 2. ISO 3950 system for tooth numbering. The view is from inside
the mouth. Each tooth is encoded as <quadrant number>.<tooth number>.

Specifically in the oral domain, Amft et al. used the sounds of
chewing as transmitted through the ear canal to automatically
detect eating activity and classify the type of food being
consumed [2, 3]. Li et al. considered embedding sensors
directly into teeth [26], and were able to recognize a number
of mouth activities such as eating, speaking, and coughing.

Amento et al. [1] and Deyle et al. [12] both experimented with
recognizing hand gestures via sounds transmitted through the
bones of the hand to the wrist. Harrison et al. sensed taps on
various arm locations via an upper arm-mounted resonator
box [16], and Zhong et al. demonstrated the transmission
of information through the human skeletal system via bone-
conducted sound [56].

Hands- and eyes-free interfaces
Interfaces that may be used hands- and eyes-free, especially
those avoiding the possible social acceptability issues with
speech, are a common subject of research in the HCI and
assistive technology communities. While much eyes-free
interface work considers unobtrusive gesture [5] or touch
[7,33,34,54], other work has, similar to Bitey, investigated face-
or head-based input to enable entirely hands-free interaction.

Chin et al. used eye tracking for cursor control with a jaw
clench for “click” activation [11], and Tuisku et al. used facial
movements to activate a gaze-controlled cursor [46]; both of
these projects required sensors to be attached directly to the
user’s face. Rather than controlling a cursor directly, Sahni
et al. mounted a magnet to a user’s tongue and recognized
silent speech via a head-mounted magnetometer [38]. Goel
et al. [14] and Li et al. [27] both developed systems to non-
invasively capture the muscle movement of the tongue while
performing various gestures. Although Bitey must also add
sensors to the head in order to detect tooth click sounds, its
hardware, located just above the ears, is much less intrusive
and visible than those proposed in other face-based interfaces.

(a) A (b) R33

(c) R34 (d) LR11

Figure 3. A selection of different types of clicks.

BITEY OVERVIEW
The idea behind Bitey is simple: to enable hands-free, subtle
input via tooth clicks. Previous work on tooth clicking [21,
22, 23, 24, 42, 43, 55, 56] has enabled single-click interfaces,
but has not investigated recognizing clicks from different teeth,
rejecting non-speech-related sounds, nor the effect microphone
placement has on system performance. In order to enable
Bitey to be useful for a variety of tasks for both assistive and
non-assistive uses, we have extended tooth click detection to
encompass these additional capabilities.

Tooth click notation
To describe different possible tooth clicks, we adapt into a
more compact format the ISO standard 3950:2009 notation
for tooth numbering [19], illustrated in Figure 2. The syntax
adopted in this paper is <side><top tooth number><bottom tooth
number>. For example, a click of the right canines (1.3 and
4.3 in the Figure) becomes R33. Clicking the top left canine
(1.3) to the bottom left first bicuspid (3.4) is L34. We use X to
indicate either side (e.g., tapping two canines is X33), LR to
indicate both sides (e.g., tapping all incisors is LR11), and A
to indicate all teeth (i.e. an entire mouth “chomp”). Figure 3
illustrates the tooth contacts for some common clicks.

Although in this work we concentrate on characterizing Bitey’s
performance with simple clicks, this system of notation also
lets us express more complex gestures, such as tapping the
right canines then sliding the lower jaw forward so the canine
touches the 1st bicuspid: R33–34. A multiple tap is prefixed
with a number: 2R33 is a double click of the right canines.

SENSING
With Bitey, we wanted to enable an unobtrusive, inexpensive
mechanism for tooth click detection. We used a monaural
piezoelectric throat microphone sold online under various
brand names (e.g., Zeadio ZP-AR201) for about USD 9.
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Other tooth-click detectionwork has placed themicrophone in a
variety of locations. Dentists using gnathosonics for diagnosis
have used the center of the forehead [52], the orbits of the
eyes [17, 49], or the cheekbone [40, 41, 44, 48]; however, these
locations are not socially subtle and could be uncomfortable
for longer-term use. Prior computing interface research has
used the throat [56], the tragus of the ear [42], and the ear
canal [24]; again, however, these locations may suffer from
the same problems for longer-term use as gnathosonic devices.
With Bitey, we place the device such that the microphone rests
just above the ears, on the temporal bone (Figure 1).

Previous research [17,25, 35, 40, 56] suggested, and our pilot
testing confirmed, that the dominant frequencies of tooth clicks
occur well below 4000Hz; therefore, we set our recording rate
to 8000Hz. To collect training data, we used the free audio
recording programAudacity, whilewe implemented live testing
using the Python package PyAudio.

SEGMENTATION AND FEATURE EXTRACTION
To detect and classify clicks in a stream of audio data from the
bone-conduction microphone, we first segment the data into
potential click candidates. We apply an empirically determined
amplitude threshold Ac to the data stream to find places where
the signal is loud enough to potentially constitute a click. We
then back off a small amount Tb to ensure that we capture
the beginning of the signal and then take a pre-determined
duration of time Td to form the potential click candidate.

The literature contains some agreement about the proper value
of Td. Considering the sound of occlusion (that is, the entire
mouth closing), Watt considered “stable” (class A) occlusal
sounds to have durations under 30 ms [51]. In their implemen-
tation of a tooth click interface, Zhong et al. used 23.3 ms as
their click duration [56]. Kuzume and Morimoto [24] found
click times under 5 ms, but only used the main body of the
sound itself without considering time required for the ampli-
tude to fall to baseline. Because the falloff of the amplitude
and frequency of bone-conducted sound will vary with the
placement of the recording device [20], the mild variation in
the literature is unsurprising. Our own results are in general
agreement, however: on average, the main body of the click is
about 10 ms. To ensure we fully capture the sound, we set Td
to 20ms, or 160 samples. We set the back off time Tb to 2ms
(16 samples). Figure 4(a)–(d) illustrates gnathosonograms
extracted using this method.

For each candidate click, we generate a simple set of features:
the FFT of the entire candidate (81 features) normalized by
the maximum FFT value, and the mean, median, standard
deviation, sum, minimum, and maximum of the raw signal
(six features). We use these 95 features as input to a support
vector machine (SVM) with an RBF kernel (implemented on a
MacBook Pro laptop in Python using the scikit-learn library).
Figure 4(e)–(h) shows FFT features for clicks from one tooth.

EXPERIMENTS
In order to evaluate the effectiveness of our system, we recruited
twenty participants (ten female). Our goal was to understand
the performance of Bitey, both under laboratory and more
realistic conditions. The questions we investigated were:

• What is the best-case performance of the system—that is, the
case where false positive-generating events are minimized,
and a large amount of training data can be used? How many
teeth pairs can be recognized and with what performance?

• How effectively can we reject false positive-causing events
such as coughing, talking, chewing, moving, walking, and
so forth?

• How much training data is necessary? In a system used in
everyday life, we would want to minimize the amount of
training data that we require the user to provide.

• How sensitive is the system to sensor placement? In actual
use, a user would take off the microphone each day and put
it back on the next; would the slight changes in placement
cause degraded recognition performance? If so, how many
different placements would be necessary to mitigate the
performance decrease?

We do not test the system’s user-dependent vs. user-independent
performance (with one exception—see Section False positives
and false negatives). The variety in tooth clicking abilities
varies widely between people with the shape of the mouth, the
motility of the jaw, and the condition of the teeth. Table 1
shows the variety of pairs of teeth our study participants were
comfortable clicking.

Data collection
We recorded data in quiet conditions in our lab. Before the
initial recording, we informed each participant of the purpose
of the study, the principle of tooth clicking for computer control,
and explained how the recording apparatus worked. We asked
the participant to experiment with clicking different teeth until
they were able to find several pairs that they could comfortably
click repeatedly, which we then noted; most participants could
click three different pairs, although several could click four or
five.

We then started a live waveform view of the recording and
asked the participant to don the recording headset and click
various teeth in order to see the effects, and to allow us to
calibrate the recording volume (this functionality could be
provided via auto gain control in a complete system). Once
the participant felt comfortable with the system, we started
recording. For each pair of teeth to be clicked, we asked
the participant to tap them together repeatedly for about 20
seconds, saving the click waveforms for each pair of teeth in
separate files. We ensured that the participant sat still in order
to prevent noise artifacts in the data.

After each recording session, we asked the participant to
remove the microphone, take a brief break, and then to replace
the device for another session. Each session we refer to as a
placement. For each participant, we collected between four
and fifteen different placements (depending on participant
availability), some over the course of several days.

We also wanted to test our system’s robustness against noise;
therefore, we also asked participants to generate data that might
cause false positives—non-click sounds mistakenly recognized
as tooth clicks. We requested them talk for 60 seconds, and
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Figure 4. Images (a)–(d) show the gnathosonograms produced by tooth clicks (x-axis seconds) while images (e)–(h) illustrate the corresponding
normalized FFTs (x-axis Hz). Images (a), (c), (e) and (g) illustrate single clicks, while (b), (d), (f) and (h) show multiple clicks overlaid.

to move around for 60 seconds. Both of these activities
are very common and could be expected to cause issues for
the system: talking—due to head-generated sound possibly
containing spurious tooth clicks [28]—and movement due to
sound transmitted through the microphone cable as it slides
and moves against the wearer’s clothing. On average, we
cumulatively recorded approximately five minutes of noise
data from each participant.

Table 1 summarizes the data we collected for each participant:
the pairs of teeth the participant was able to click together com-
fortably and repeatedly, the number of different microphone
placements in which we collected data from that participant,
the number of segments of noise data found by the click detec-
tion algorithm (which could possibly be falsely classified as
tooth clicks), and the amount of noise data we recorded.

RESULTS

Best-case performance
Although a system such as Bitey would normally be used under
non-ideal circumstances—that is, during everyday life with
attendant noise that could cause false positives—it is valuable
to test the system under controlled conditions to get an idea of
its best possible performance. Our data was collected in quiet
lab conditions with no added noise from movement, speech,
coughing, or other sounds. To evaluate the data in a realistic
manner, we worked under the assumption that the user would
train the system once and then use it later, after removing and
replacing the microphone. Traditional N-fold cross validation
divides the data into N folds, trains on N − 1 and tests on the
remaining N th. However, with our data, this method has a
high likelihood of training and testing with data from the same
placement. Therefore, we treat each separate placement as a
fold, leaving one out for testing, and training on the remaining
placements. The results of this best-case test are illustrated in
Table 1 (column Acc) and Figure 5. The results are promising:
we see a mean accuracy of 78% (S T D = 15%), with some
participants’ data reaching above 90%. There appears to be
no correlation between the number of teeth clickable or the
number of placements and the accuracy achieved.

False positives and false negatives
We tested the system’s performance with false positives (non-
click data incorrectly recognized as clicking) and false neg-
atives (clicks incorrectly recognized as noise). For each
participant, we ran the click detection algorithm on that par-
ticipant’s noise data (movement and speaking) and combined
the results into one “Noise” class. We included this Noise
class with the other tooth click data and proceeded as in the
best-case performance section above, testing via five-fold cross
validation. The results are illustrated in the AccNoise column
of Table 1 and in Figure 5.

Across all participants, we collected 1.64 hours of noise data,
from which our click detection algorithm found 83,942 poten-
tial click candidates. Of these, just 674 (.8%) were incorrectly
classified as clicks, while 5,255 of 44,324 intentional clicks
(11.9%) were incorrectly classified as noise. This ratio of
few false positives to more false negatives is desirable in an
interactive system such as this: requiring the user to repeat an
input is better than performing an action when no action as
been requested. Table 1 summarizes this data per participant
via precision—the ratio of the number of actual clicks recorded
by the participant and detected by Bitey (true positives) to
the total number of clicks (including false positives) detected
by Bitey—and recall—the ratio of true positives to the total
number of clicks recorded by the participant.

We also tested to see if the characteristics of the noise data dif-
fered between people. Having a pre-trained user-independent
noise class would simplify the training procedure by not re-
quiring users to train the system on noise. To determine the
feasibility of this idea, we collapsed all of a participant’s noise
data into a single class with the label of the given partici-
pant. We then performed five-fold cross-validation on the
noise classes from all participants. Our overall accuracy was
surprisingly high at 69%, suggesting that noise is somewhat
user-dependent. One possible reason is that, with a wide
variety of body types represented amongst our participants,
the distribution of absorption of different noise frequencies
may vary predictably between people.
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PN Tooth pairs Nplace Nclicks Nnoise Tnoise Acc Accnoise P R
1 L88, LR11, R88 17 2721 3597 6:31 81.5 87.7 97.6 85.1
2 L33, L77, LR11, R33 11 2594 3691 2:36 95.9 96.4 99.7 94.8
3 L33, L44, LR11, R33, R44 6 1709 2700 8:03 93.5 96.4 99.1 95.7
4 L66, L77, LR11, R66 6 2860 12572 7:44 52.3 87.9 96.9 74.4
5 L33, LR11, R33 10 1355 1130 1:05 90.1 92.7 99.1 93.0
6 L33, L44, L66, LR11, R67 12 4871 1954 1:13 75.9 78.1 98.6 93.6
7 L33, L34, LR11, R33, R34 9 3209 716 2:02 93.0 92.9 99.7 96.0
8 L88, LR11, R88 8 2167 6737 3:57 74.5 91.0 97.3 86.9
9 L11, R11, R33 5 1186 7658 7:11 56.7 91.9 98.1 74.9
10 L33, L34, LR11, R33, R34 4 748 1441 1:35 68.9 87.4 99.7 91.6
11 A, L33, LR11, R33, R34 17 6011 1951 9:55 87.4 87.9 99.4 94.9
12 L33, LR11, R33 11 1542 3307 2:45 87.7 94.6 98.5 93.2
13 L34, L76, LR11 5 1205 11293 7:03 64.1 94.9 92.9 75.4
14 L88, LR11 8 1417 7312 3:52 92.4 90.7 91.8 69.7
15 L33, L88, LR11, R33, R88 10 4505 3657 7:13 41.6 66.3 99.8 94.9
16 L33, LR11, R33 4 1285 3937 6:40 78.4 91.7 98.5 86.4
17 L22, L33, R22, R33, R88 4 1159 834 1:14 70.5 76.6 99.4 83.8
18 L33, R11, R44 10 1439 3600 2:39 98.5 98.9 99.3 97.3
19 L33, LR11, R33 13 2891 3852 6:32 82.5 90.4 99.1 88.6
20 L22, L88, LR11, R33 12 2776 4662 8:19 87.5 93.7 99.4 94.3

Table 1. A summary of the data collected and best-case results for each participant in our data collection: the participant (PN), the pairs of teeth each
study participant was comfortable clicking repeatedly, the number of different placements in which data was collected (Nplace), the total number of
detected clicks in each participant’s data set (Nclicks), the total number of detected click candidates in each participant’s noise set (Nnoise), the amount
of noise data collected for each participant (Tnoise, minutes), the best-case accuracy without noise (Acc), the best-case accuracy with noise (Accnoise),
the precision (P) and the recall (R). Note that accuracy can improve with the Noise class included due to the large number of correctly classified noise
examples.

Necessary training data
In a real-world usage scenario, we would prefer to minimize
the amount of training data required from the user before the
system is ready to use. How much training data is necessary
to get a good level of performance? We combinatorially
explored how the numbers of training examples and the number
of placements training examples were taken from affected
recognition performance. We experimented with training sizes
TS from each class of 1, 5, 10, 15, 20, 25, and 30 samples.

As discussed earlier, we have at least four placements of
recorded data per study participant. For a given set of place-
ments P = {p1, p2, . . . , pn} of size n, we generated all possible
k-combinations for k from 1 to n − 1, by selecting k distinct
placements from P. For example, for n = 4, we have:

{1}, {2}, {3}, {4},
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}

We take the k placements in each k-combination as training data
and use the remaining n − k placements as test data. However,
the total number of k-combinations for n placements is(

n
k

)
=

n!
k! (n − k)!

For 17 placements (e.g., participants 1 and 11) and k = 8 we
have 24,310 possibilities, which is computationally prohibitive

to work with. Therefore, we tested up to 100 randomly selected
k-combinations of training sizes and groups of placements
for k from 1 to n − 1, in each randomly selecting TS training
samples from each class of the placements, training a model,
and testing on all of the data not in the k-combination. For the
four-placement example above, one such test might be selecting
TS = 15 training examples from each class in combination
{1, 3, 4}, and testing on placement 2.

Following this procedure, we averaged the accuracy for all
groups with the same number of placements, yielding a mean
accuracy score for each combination of training size TS and
number of placements trained upon.

Our results varied quitewidely between participants. In general,
however, those with lower performance as reported in Table 1
required more placements with more training data to reach an
acceptable level of accuracy. Overall, however, we detected no
“magic” number of placements or number of training examples
that are necessary. For some participants, accuracy stopped
increasing significantly after adding 2–3 placements or 5–10
training examples, but for others accuracy continued to rise as
far as we tested.

One possibility for this difference between participants may be
in the morphology of the jaw and teeth. In future explorations,
we intend to request participants to undergo a dental exami-
nation to help us understand what factors can influence the
performance of Bitey. However, we speculate that the most
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Figure 5. Confusion matrices for each participant based on leave-one-out validation based on placement, including the composite Noise class. The y axis
on each matrix is the true label and the x axis is the predicted label.

improvement in this area will not come algorithmically, but via
engineering the microphone to sit more reliably in the same
place on the user’s head, perhaps by incorporating it into a hat,
glasses, or a head-worn display such as Google Glass.

SUPPLEMENTAL EXPERIMENTS

Live testing
Our experiments above were all performed with data collected
via participants repeatedly clicking one pair of teeth before
moving to the next pair. To test Bitey in a more externally valid
scenario, we implemented two simple applications for live
testing, which might be appropriate as assistive technology.

The most basic application was a simple list selection task
inspired by Zhong et al.’s test, where participants used a single
click to advance through a list and a double click to select [56].
Our software prompted the user to use three pairs of teeth to
navigate to and select one item out of eleven (Figure 6). One
click corresponded to up, one to down, and one to select. Once
the user selected the requested item, another random item was
requested. Table 2 shows the results for the list selection task.

Additionally, to explore the limits of what Bitey can accomplish,
we implemented BiteWrite, a tooth-click based text input
system. We used a version of MacKenzie’s H4-Writer [29],
using Huffman codes to assign minimal click sequences to

Figure 6. The list selection interface. The user clicks to move the cursor
up and down and to select the desired item.

generate letters. For example, two clicks—represented as 0
and 1—generate sequences such as ‘010’ for ‘e’ and ‘011001’
for ‘g’. For a participant able to click N pairs of teeth, we
implemented the N − 1-click version of the keyboard, with the
N th click used as “cancel” (in the case of a partially entered
sequence) or “backspace” (otherwise). Table 3 displays the
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List Selection BiteWrite

PN N CpM SpM N SpC Err
1 5 1.2 (0.2) 2.7 (0.8) 3 9.7 (2.1) 13.0 (4.2)
2 5 1.6 (0.7) 2.2 (1.4) 3 8.3 (1.8) 15.7 (6.8)
6 5 1.6 (1.2) 2.0 (1.4) — — —
8 7 2.9 (1.9) 3.7 (2.5) 1 24.8 (0.0) 10.8 (0.0)
11 5 1.3 (0.5) 2.1 (1.7) 3 6.6 (2.3) 16.6 (9.4)
12 5 1.1 (0.2) 1.4 (0.3) 2 21.1 (4.1) 7.3 (0.3)
13 9 1.1 (0.2) 3.9 (2.4) — — —
19 5 1.3 (0.4) 3.9 (1.6) 3 12.2 (1.1) 10.8 (2.1)
20 5 1.3 (0.3) 1.6 (0.4) 3 12.2 (1.1) 10.8 (2.1)

Overall 5 1.5 (1.0) 2.7 (1.9) 2 11.9 (5.5) 12.6 (5.3)
Table 2. Statistics for the list selection and BiteWrite tests; PN is the
participant number. For the list selection task, N is the number of
selection tasks done by the participant, CpM shows the mean (std) clicks
per move to get a correct selection, and SpM is the mean (std) seconds
per move to get a correct selection. For BiteWrite, N is the number
of sentences typed by the participant, SpC is the mean (std) number
of seconds per character, and Err is the mean (std) error rate. The
Overall row gives the mean (std) values over all participants. Note that
participants 6 and 13 did not participate in the BiteWrite test, and 8 had
a difficult time and elected to stop the test after a single sentence.

sequences used for N = 5. BiteWrite displays the sequences to
click for each letter, a text input area, prompt text, and a record
of what the last click was recognized as. Figure 7 illustrates
BiteWrite for a participant able to click five pairs of teeth.

We recruited eight participants to return and informally test
the list selection interface and BiteWrite. For each participant,
we used all of their previously collected training data, as well
as conducting a new training session in order to gain the best
performance possible. The list selection interface worked
well, with participants averaging 1.5 clicks to move between
two list elements. BiteWrite, however, did not fare as well,
with an average of almost 12 seconds to select each character,
and a high error rate, with 12.6% of the clicks being the
cancel/backspace click. These results are shown in Table 2.

DISCUSSION
Our preliminary testing of Bitey allows us to form some specific
conclusions to guide future research.

Live performance
The performance of Bitey during live testing did not mirror
its overall high accuracies in the best-case scenario, although
we trained with a large amount of data. There are at least
two factors that account for this discrepancy. During training,
we asked participants to repeatedly click one pair of teeth for
about 20 seconds. During this procedure, the impact of the
teeth tends to happen at about the same location on each tooth;
however, during live usage when the user is rapidly switching
between teeth, variation will naturally occur. A second issue
is that of fatigue: BiteWrite participants took on average 4.75
minutes (S T D = 2.4) to type each sentence, and as the jaw
fatigues, the impact of tooth on tooth will naturally vary.

Bitey can be improved for live performance in several ways.
As a simple proof-of-concept, BiteWrite did not use predic-
tion at all. Including predictive text or auto-complete would
likely significantly speed up its operation. Additionally, the

Figure 7. The BiteWrite interface. The keyboard view is for reference
only, showing the sequence of clicks necessary to input each letter, and
the possible keys given the input sequence so far. The last six tooth clicks
detected are listed in the lower-right area; if the user taps R33, the letter
‘y’ will be generated.

Huffman coding method we borrowed from H4-writer [29] is
optimized for information transmission [18], and the tree used
to construct the coding is unbalanced. This property does not
matter for machine information transmission, but for Bitey, it
means that certain teeth are used more frequently than others.
Reconstructing the tree to be less efficient but more balanced
could help with fatigue. Despite these options, we consider
BiteWrite to be an example of the possibilities of Bitey and
not a useful text input technique; however, a similar method
could be used for PIN input.

Anothermethod for improvingBitey’s performance is to change
how users train the system. Rather than a repetitive tapping,
we might ask users to tap their teeth in different sequences
to take into account any “co-articulation” effects that occur.
BiteWrite might be useful for this purpose—users could type
a short sentence that uses all tap sequences.

System hardware
Although not expressly intended for bone-conduction appli-
cations, the inexpensive throat microphone we used worked
remarkably well. Its major drawback was in the form factor—
being shaped for the throat meant that it could be uncomfortably
tight on the head. Re-bending the headband did mitigate this
problem, however, and the hardware is easily adaptable to be
placed in a hat or headband for improved wearability. Google
Glass already incorporates a bone-conduction speaker, so
adding a microphone could be a simple matter as well.

Improving performance
The best-case performance of the system (Table 1) was sur-
prisingly variable, but tended to be close to 70% or higher.
Participants 4 and 15 were exceptions, with 52.3% and 44.3%
accuracy (without noise) respectively. We experimented with
joining or removing some of the pairs of teeth for 4 and 15 to
see if a reduced set would yield higher accuracy. We joined
the two most-frequently confused pairs of teeth for each; for
participant 4, we joined L66 and L67, and for participant 15, we
joined L33 and L88 into a Left class and R33 and R88 into a Right
class. The results, displayed in Figure 8, show the feasibility
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Table 3. H4-Writer sequences for generating letters. With BiteWrite, each number 1–4 corresponds to a particular pair of teeth for a user; the 5th tooth
click is “cancel” or “backspace” if a sequence has not yet begun.
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Figure 8. Confusion matrices for participants 4 and 15 with two tooth
pairs joined (left column; accuracy 90.9% for 4 and 83.7% for 15) or one
tooth pair removed (right column; 92.1% for 4 and 75.2% for 15).

of the approach, with joining confused pairs resulting in an
average accuracy increase of 37%.

We also attempted to improve performance by using stereo
data. Although our bone-conduction microphone is mono, it is
relatively simple to construct a stereo version by removing the
piezeoelectric microphone element and accompanying circuit
board from one unit, inserting it into the other side of a second
unit, and soldering on a new stereo headphone cable. We used
a Griffin iMic USB sound card to enable stereo input into the
computer. We recorded stereo data for six participants, but
saw very little difference in accuracy, on the order of ±1–2%.

The surprisingly high performance of monaural audio can
possibly be attributed to the attenuation of different frequencies
as they pass via bone conduction through the mandible and
skull [20]. Even without the amplitude differences afforded
by two microphones, the spectral properties of a tooth clicked
on the other side of the head from the microphone location
will be different than those of a nearby click, allowing Bitey
to differentiate between, for example, L33 and R33, even with
monaural data.

Extended noise testing
To determine how Bitey might perform in an all-day scenario,
we collected approximately six hours of non-click data from
participant 7, including walking, eating (including chips, nuts,
and ice), driving, and talking. Out of the six hours, Bitey
detected 148,459 potential click candidates, but of these only
649 were incorrectly identified as clicks. While percentage-
wise this is good performance, in terms of absolute numbers it
leaves much to be desired, with a false positive on average every
30 seconds. One possible avenue of improvement is a more
sophisticated segmentation algorithm, perhaps taking into

account surrounding sounds—i.e., only passing a candidate
on for consideration when a period of silence falls before and
after the potential click.

BITEY IN DENTISTRY
Two of the co-authors are professors at a local school of
dentistry, who assure the reader that the force of clicking used
in Bitey is unlikely to cause damage to the teeth. In this section,
we suggest some ways that Bitey could be used in modern
clinical practice. A 1998 study conducted by Tyson found
that gnathosonics can be a reliable method for monitoring
occlusion [47], but still focused on manual inspection of the
gnathosonogram. Bitey’s simple and inexpensive recording
hardware combined with machine learning techniques may
have applications in dentistry.

The humanmandible moves like a hinge. When a person closes
the jaw, there is contact of the upper and lower teeth. Depending
on the anterior and posterior relationship, teeth may contact
evenly or unevenly. Bitey could allow dental practitioners
to estimate the force of contact through the amplitude of the
signal, or to determine differences between tooth contact. This
is most important when evaluating patients having orthodontic
treatment as well as crowns and bridges.

Bitey may also have applications in diagnosing conditions such
as ankylosed teeth (teeth fused to the bone of the jaw) [6] or
dental caries (cavities), or measuring the looseness of teeth,
which will aid in the diagnosis of gum disease. We plan to
conduct future studies to determine occlusion before and after
orthodontic treatment and to compare temporomandibular joint
disorder patients with TMJ pain to those without pain.

CONCLUSIONS AND FUTURE WORK
Bitey is a preliminary exploration of the possibilities of hands-
free tooth click-based input. We have shown that it is possible
to detect which pair of teeth is being clicked with a high degree
of accuracy: up to 96% accuracy with five different tooth pairs.

Although in the present research we only evaluated single
clicks, we plan to explore further possibilities for gnathosonic
interaction. For example, a post-click slide from the canine
to the bicuspid (R33-34) makes a double-clicking sound that
is distinct from a double click of a single tooth (e.g., 2R33).
Teeth also make sounds when they slide against one another,
which could enable further expressivity.

We are currentlyworking on implementingBitey for controlling
actual devices, such as watches and head-worn displays, and
as part of the work will continue to improve the click detection
and classification algorithms as well as the hardware itself.

Finally, in collaboration with other professors at our dental
school, we plan to investigate the applicability of Bitey to
dental diagnosis and monitoring.
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